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Abstract. Experimental transition probabilities between states of the ground-state alternating-parity
bands of 144Ba and their theoretical analysis are presented. Lifetimes of states in 144Ba have been measured
using the recoil distance method following spontaneous fission of 252Cf. The experiment was performed at
the Lawrence Berkeley National Laboratory employing the Gammasphere array and the New Yale Plunger
Device. The experimental data show a significantly larger value of the E2 transition probability between
the negative-parity states compared to the positive-parity ones. It is shown that this effect can be ex-
plained by a higher weight of the deformed component in the wave functions of the odd-I states. In the
framework of the cluster approach it is explained by a higher weight of the alpha-cluster component in
the wave function of the negative-parity states compared to the positive-parity ones. In the framework
of the traditional collective model with the quadrupole and octupole degrees of freedom the same effect
is explained by a higher value of the quadrupole deformation at the minima of the potential energy as a
function of β20 and β30 compared to its value at the top of the barrier separating two physically equivalent
minima, having opposite signs of the octupole deformation. Additionally, the dependence on parity of the
E2 transition probability is analyzed qualitatively in nuclei with a minimum at β30 = 0 in the collective
potential energy and compared to experimental data for 148Nd.

PACS. 21.60.Ev Collective models – 21.60.Gx Cluster models – 23.20.Js Multipole matrix elements –
27.60.+j 90 ≤ A ≤ 149

1 Introduction

Quadrupole and octupole modes are the most impor-
tant collective degrees of freedom determining the nu-
clear properties at low excitation energies. For this rea-
son an understanding of their dynamics is important for
the development of the collective nuclear model. Among
the problems which should be clarified is the role of the
interplay of the quadrupole and octupole modes.

The observation of the low-lying negative-parity states
in actinides and in heavy Ba and Ce isotopes [1,2]
has shown that these nuclei have reflection asymmetric
shapes or, at least, are characterized by a presence of
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strong reflection asymmetric correlations together with
the quadru-pole ones. This fact gives the grounds to con-
sider the rotational-like sequences of the lowest positive-
and negative-parity states 0+, 1−, 2+, 3−, . . . as a unified
ground-state alternating-parity band. The formation of
the rotational bands is connected in general with a con-
stant quadrupole deformation, while the lowering of the
negative-parity states is a signature of the reflection asym-
metric deformation. Therefore, the investigation of the
properties of the alternating-parity bands should include
both quadrupole and reflection asymmetric degrees of free-
dom and their interplay.

One of the well-known characteristics of the alternat-
ing-parity bands is the parity splitting which is a shift
up in energy of the negative-parity states with respect to
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the positive-parity ones. This phenomenon is seen as the
∆I = 1 staggering in the excitation energies. This parity
splitting effect is explained [3–5] by an angular-momentum
dependence of the penetration probability through the
barrier separating two minima in the potential energy as
a function of the quadrupole and the reflection asymmet-
ric collective coordinates. The octupole deformation pa-
rameter β30 or the cluster degree of freedom [6,4] can be
used as the latter one. The height of the barrier increases
with angular momentum because the moment of inertia is
larger at the minimum compared to its value at the bar-
rier top. Since the moment of inertia is also a function of
the quadrupole deformation coordinate, correlations be-
tween the quadrupole and reflection asymmetric degrees
of freedom are expected [7]. Indeed, for such nuclei the
motion of the system in the β20β30-plane is correlated as
a softer mode, which describes a motion along the valley
connecting the minimum with the barrier top, and a more
rigid mode describing fluctuations around this trajectory
are formed. The softer mode is just the cluster mode used
in [4,5].

The other indication for the presence of the quadrupole
– reflection asymmetry correlations is an enhanced E2
transition probability between the negative-parity states
in the ground-state alternating-parity band of 144Ba. Ex-
perimental evidence for this enhanced quadrupole moment
is presented in this work. Preliminary results have been
presented in [8], which is consistent with the results re-
cently reported in ref. [9].

The model which is based on correlations between the
quadrupole and reflection asymmetric degrees of freedom
and which was already applied to the description of the
properties of alternating-parity bands has been developed
in [4,5]. In this model a collective motion of a nuclear
shape is considered, which leads with some probability to
the formation of a cluster-type shape. The only collective
degree of freedom considered in this model describes a
mass asymmetry of the cluster configuration. Quadrupole
and octupole deformations are functions of this cluster de-
gree of freedom [10] and they both evolve with the cluster
degree of freedom. It was shown that this model provides
an explanation of the variation from nucleus to nucleus
of the observed value of the parity splitting for different
values of the angular momentum. This means that the
model describes correctly a variation of the potential en-
ergy as a function of the reflection asymmetric coordinate
and angular momentum I for many considered nuclei.

The aim of the present paper is to present the results
of the measurements of the E2 transition probabilities in
the ground-state alternating-parity band of 144Ba, which
can be considered as a nucleus with a strong reflection
asymmetric correlations or permanent octupole deforma-
tion, and to analyze the electromagnetic transitions be-
tween the states of this band. There will be an emphasis on
the description of the E2 transitions based mainly on the
cluster model approach and partly on the other existing
theoretical models. In this connection it is important to
mention that the threshold energy for the decay of 144Ba
into 140Xe + 4He is only 1.2 MeV above the ground-state

energy of 144Ba. This indicates a possible importance of
the α-cluster component in the wave function of the low-
lying states of 144Ba.

To stress a contrast in the mechanisms determining
parity dependence of the E2 transition probabilities in
nuclei, having permanent octupole deformation or being
near to be octupole deformed, and octupole vibrational
nuclei, we consider in sect. 4 a model describing octupole
vibrations in quadrupole deformed nuclei. This model is
applied to the description of the E2 transitions between
the low-lying negative-parity states in 148Nd which is an
octupole vibrational nucleus.

2 Experimental data

Lifetimes of excited states in 144Ba were measured fol-
lowing the spontaneous fission of 252Cf. The experi-
ment was performed at the Lawrence Berkeley National
Laboratory by employing the New Yale Plunger Device
(NYPD) [11] and a photocell array in conjunction with the
Gammasphere array [12], which comprised 100 Compton-
suppressed high-volume Ge detectors. A schematic of the
experiment can be found in ref. [13]. Fragments originat-
ing from a thin ∼ 70 µCi 252Cf source on a stretched
∼ 1 mg/cm2 Ni foil were detected by a set of photocells,
which covered an angular range of ± 20◦ with respect to
the plunger axis. The complementary fragments, after be-
ing somewhat slowed in the Ni foil, traveled a variable
distance before being stopped in a stretched 10 mg/cm2

Au stopper foil. Coincidence events were recorded if at
least three suppressed gamma rays were detected in the
Ge detectors and one particle in the photocell array within
a time window of about 200 ns. A gate on the fragment
energy allowed selection of the lower (A ∼ 100) and higher
(A ∼ 140) mass fission products, respectively.

Approximately 85 × 106 coincidence events were col-
lected at each of the 22 source-to-stopper distances be-
tween 9 and 7000 µm for approximately one day per
distance. The data were stored in an energy sorted list-
mode database, using the software package Blue [14]. By
applying gating conditions on particle energy, gamma-
ray energy and time-gated spectra were generated for
each distance and intervals of 0.1 width in cos θ
[0.0–0.1, 0.1–0.2, 0.2–0.3, . . .], where θ is the angle between
the emitted γ-ray and the direction of the emitting fission
fragment. Gates were placed on Doppler-shifted energies
for transitions above the level of interest and both shifted
and unshifted transition energies below the level of inter-
est. Figure 1 shows background subtracted spectra gated
on the ground-state transition 144Ba in order to show sev-
eral transitions of interest.

The data was analyzed using the differential decay
curve method [15] which, for this experiment, has been al-
ready been described in more detail in ref. [13]. In compact
form, the lifetime can be extracted from the intensities of
the shifted and unshifted peaks at different distances using
a simple ratio of intensities and their derivatives, respec-
tively. If the level of interest is populated by transition B
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Fig. 1. Background subtracted single-gated spectra on the
144Ba ground-state transition at source-to-stopper distances of
9, 330, and 612 µm for angles θ < 46◦ between the emitted
γ-rays and the emitting fission fragment. In the spectra, un-
shifted (dotted lines) and Doppler-shifted (dash-dotted lines)
components of the 302 keV 9− → 7−, 331 keV 4+ → 2+,
394 keV 7− → 6+, and 431 keV 6+ → 4+ transitions in 144Ba
are indicated.

and depopulated by transition A, and IA,Bu,s are the un-
shifted (u) and shifted (s) intensities of transitions A and
B, respectively, then the lifetime is given by

τ(x) =
F (x)

G(x)
≡
IAu (x)−

IA

u
(x)+IA

s
(x)

IB
u
(x)+IB

s
(x)
· IBu (x)

v d
dxI

A
s (x)

. (1)

Here, v is the velocity projection of the fission fragment
on the plunger axis. If the shifted component of the di-
rect feeder transition is used as a gate, then the unshifted
component IBu (x) = 0 for all source-to-stopper distances
x, and the lifetime can be found only by the intensities of
the unshifted peaks and the derivative of the intensities of
the shifted peaks, τ(x) =

(

IAu (x)
)

/
(

v d
dxI

A
s (x)

)

, as shown

in fig. 2 for the 394 keV 7− → 6+ transition in 144Ba.
Doubly gated spectra using coincidences between transi-
tions feeding the 7− level and transitions in the decay of
this level were used in this analysis.

Lifetimes have been obtained for the 41
+ and 61

+ levels
of the ground-state band and the 7− level of the octupole
band in 144Ba. The results are summarized in table 1.
Preliminary results for 144Ba have been published in [8].

While the decay of the 9− state is visible in the spec-
tra shown in fig. 1, it was impossible to perform a DDCM
analysis in coincidence mode for this state. Single-gated
spectra on direct or indirect feeding transitions of the 9−

101            102            103

F(x)

G(x)

Fig. 2. The functions F (x) and G(x) in eq. (1) as well as
the lifetime values τ(x) as functions of the source-to-stopper
distance for the 7− → 6+ transition in 144Ba. Only statistical
errors are given in this picture. For a discussion of the treat-
ment of systematic uncertainties, see ref. [13].

state were not sufficiently clean for a reliable analysis. In
particular, the proximity of the 506 keV 11− → 9− transi-
tion to the much more intense 509 keV 8+ → 6+ transition
poses the main problem. In double-gated spectra for the
9− → 7− transition, the obtained statistics transitions
feeding the 9− state were insufficient for a reliable anal-
ysis. Therefore, we were unable to extract a lifetime for
this state.

3 Model consideration of the E2 transitions

between the negative-parity states in 144Ba

In our approach to describe the properties of the
alternating-parity bands the mass asymmetry coordinate
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Table 1. Lifetimes, B(Eλ) values, transition quadrupole moments Qt for E2 transitions and dipole moment Dt for the E1
transition obtained in the present work for 144Ba.

Iπi → Iπf Eγ Eλ τ B(Eλ) Qt Dt

(keV) (ps) (e2 fm2λ) (e fm2) (e fm)

4+ → 2+ 331 E2 74 (4) 2700 (150) 308 (9)

6+ → 4+ 431 E2 21 (2) 2590 (250) 287 (14)

7− → 5− 317 E2 5.7 (10) 8000 (1800) 500 (60)(a)

7− → 6+ 394 E1 1.5 (3)· 10−3 0.12 (1)(a)

(a) Using branching ratios of 1.00(6) and 0.22 (3) for the 394 and 317 keV transitions [16].

η = (A1−A2)/(A1+A2) (η = 1 if A1 = A,A2 = 0) is used
as a relevant collective variable instead of the parametriza-
tion of the nuclear shape in terms of the quadrupole and
octupole deformation parameters. Here Ai is a mass num-
ber of the i-th cluster. Since η is a dynamical variable, the
ground-state wave function can be a superposition of dif-
ferent cluster configurations which contribute with certain
probabilities. A relative contribution of each cluster com-
ponent in the total wave function is determined by the
potential energy of the collective Hamiltonian described
below and the inertia coefficient. Our calculations for ac-
tinides and heavy Ba and Ce isotopes have shown that
in the considered cases configuration (A−4)(Z − 2) + 4He
with the alpha cluster has the potential energy which is
close to or even smaller than the energy of the mononu-
cleus (|η| = 1). The weight of the alpha-cluster compo-
nent in the ground-state wave function of nuclei with
strong reflection asymmetric correlations is of the order
of (2–5)%. However, it increases with angular momentum
and is larger for the negative-parity states compared to
the positive-parity ones. Since the energies of the configu-
rations with a light cluster heavier than an alpha cluster
increase rapidly with decreasing |η|, we can restrict our
consideration to configurations with the light clusters not
heavier than Li, i.e. by configurations near |η| = 1. For this
reason it is convenient to introduce the collective variable
x which is related to η in the following way:

x = −η + 1 if η > 0 ,

x = −η − 1 if η ≤ 0 . (2)

The Hamiltonian describing a motion in x has the form

H = − ~
2

2Bη

d2

dx2
+ U(x, I), (3)

where Bη is a constant effective inertia parameter and
U(x, I) is a potential energy. The potential energy of a
system is given as

U(x, I) = B1(x) +B2(x) + V (x, I), (4)

where B1(x) and B2(x) are the experimental binding ener-
gies of the heavy and the light clusters at the given mass
asymmetry x. The quantity V (x, I) is a nucleus-nucleus
potential given as

V (x, I) = VCoul(x, I) + Vrot(x, I) + VN (x) (5)

with the Coulomb VCoul, centrifugal Vrot = ~
2I(I +1)/2=

and the nuclear interaction VN potentials. The nuclear
interaction potential has a double folding form with the
ground-state nuclear densities. Antisymmetrization be-
tween nucleons belonging to different clusters is imi-
tated by a density dependence of the nucleon-nucleon
forces which are responsible for the repulsive core in
the cluster-cluster interaction potential. Details of the
calculation of VN are given in [17]. The parameters
of the nucleon-nucleon interaction are fixed in the
nuclear-structure calculations [18]. The specific point in
the calculations of the potential energy is x = 0. Since
the ground-state wave function is distributed in x, the
potential energy at x = 0 is fixed so as to reproduce the
experimental binding energy of the AZ nucleus with re-
spect to U(xα), where xα corresponds to the α-cluster
configuration.

Thus, the potential U(x, I) of the Hamiltonian (3) con-
tains no free parameters. It depends on the binding ener-
gies of the clusters which are taken from the experimental
data. The method of calculation of the inertia coefficient
Bη is given in [19]. Our calculations show that Bη is a
smooth function of the atomic mass number. As a con-
sequence, in our previous calculations [4] we have taken
the same value of Bη for nuclei belonging to the same
mass region. For instance, for all actinides we have taken
Bη = 20 · 104m0 · fm2, where m0 is the nucleon mass. The
approach described above has been succsessfully applied
in [4] to the description of the energy spectra and the tran-
sitional dipole, quadrupole and octupole moments for the
experimentally measured transitions for the chains of the
Pu, U, Th and Ra isotopes.

We parameterize the moment of inertia of the cluster
configurations by

=(x) = 0.85

(

=1,rigid + =2,rigid +m
A1A2

A
R2
m

)

, (6)

where =i,rigid is the rigid-body moment of inertia of the
i-th cluster, m is the nucleon mass, Rm is the distance
between centers of mass of two clusters and the coefficient
0.85 was taken because it is known [20] that the moments
of inertia of the superdeformed state are about 85% of
the rigid-body limit. As was shown in [10], the highly
deformed states are well described as cluster systems.
The moment of inertia of the mononucleus =(x = 0) is
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Table 2. Experimental (Eexp) and calculated (Ecalc) energies
of states of the alternating-parity band in 144Ba. Energies are
given in keV. Experimental data are taken from [21].

Iπ Eexp Ecalc

0+ 0 0
1− 759 701
2+ 199 178
3− 838 863
4+ 530 559
5− 1039 1127
6+ 962 1052
7− 1355 1461
8+ 1471 1546
9− 1773 1847
10+ 2044 2018
11− 2279 2281
12+ 2667 2500
13− 2864 2764
14+ 3321 3019
15− 3519 3301

Table 3. Transitional electric dipole moment for transitions
in 144Ba.

Iπi → Iπf D0(theor) (e fm) D0(exp) (e fm)

0+ → 1− 0.045 –
1− → 2+ 0.051 –
2+ → 3− 0.054 –
3− → 4+ 0.072 –
4+ → 5− 0.080 –
5− → 6+ 0.112 –

6+ → 7− 0.122 0.12(1)(a); 0.17(3)(b)

7− → 8+ 0.159 –
8+ → 9− 0.171 –
9− → 10+ 0.195 –
10+ → 11− 0.206 –
11− → 12+ 0.222 –
12+ → 13− 0.230 –
13− → 14+ 0.240 –
14+ → 15− 0.246 –

(a) This work.
(b) Reference [9].

fixed so as to reproduce the experimental energy of the
first 2+ state.

The potential U and the moment of inertia = are cal-
culated for special cluster configurations only, namely, for
the mononucleus and for the cluster configurations with
the α and Li clusters as light clusters. These calculated
points are used then to interpolate the potential and the
moment of inertia smoothly by polynomials.

Solving the eigenvalue problem with the Hamiltonian
(3) we obtain the energies and the wave functions φI(x)
for every value of I. The wave functions are used then to
calculate the reduced transition probabilities. The eigen-
functions of the Hamiltonian (3) have a well-defined parity
with respect to the x→ −x reflection which is equivalent
to the spatial reflection [4].

Table 4. Transitional electric quadrupole moment for transi-
tions in 144Ba.

Iπi → Iπf Q2(theor) Q2(exp)

(e fm2) (e fm2)

0+ → 2+ 338 325(9)(b); 338 (12)(c)

1→ − 3− 417 –

2+ → 4+ 347 308(9)(a); 379(27)(d); 330(16)(c)

3− → 5− 425 –

4+ → 6+ 366 287(14)(a); 283(16)(c); 247(27)(d)

5− → 7− 436 499(55)(a); 730 (140)(c)

6+ → 8+ 399 266(20)(c)

7− → 9− 447 230(37)(c)

8+ → 10+ 433 –
9− → 11− 456 –
10+ → 12+ 453 –
11− → 13− 463 –
12+ → 14+ 463 –
13− → 15− 458 –

(a) This work.
(b) Reference [22].
(c) Reference [9].
(d) Reference [23].

Table 5. Transitional electric octupole moment for transitions
in 144Ba.

Iπi → Iπf Q3 (e fm3)

0+ → 3− 1409
1− → 4+ 1708
2+ → 5− 1508
3− → 6+ 2066
4+ → 7− 1768
5− → 8+ 2418
6+ → 9− 2189
7− → 10+ 2657
8+ → 11− 2582
9− → 12+ 2811
10+ → 13− 2810
11− → 14+ 2913
12+ → 15− 2931

With the obtained wave functions we have calculated
the reduced matrix elements of the electric transition
multipole moments Qt(Eλ) with λ = 1, 2 and 3 for
the ground-state alternating-parity band. The quadrupole
transition operator in this model is given by the expression

Q2µ =

√

5

16π
D2
µ0Q20(x) , (7)

where Q20(x) is the intrinsic quadrupole moment for the
given value of the reflection asymmetry coordinate x de-
termined above. For the reduced E2 transition matrix el-
ement we obtain

〈I ‖ Q2 ‖ I − 2〉 =
√

5

16π

√
2I − 3CI0

I−2020

×
∫

φI(x)Q20(x)φI−2(x) . (8)
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Table 6. Angular-momentum dependence of the calculated B(E1; I → I − 1) in units of B(E1)W = 1.73 e2 · fm2 and the
branching ratio B(E1; I → I − 1)/B(E2; I → I − 2) for 144Ba. For comparison, the experimental data taken from [16] are
presented in the column “exp”.

Iπ B(E1; I → I − 1)/B(E1)W (10−3) B(E1; I → I − 1)/B(E2; I → I − 2) (10−6 · fm−2)
calc calc exp

7− 0.94 0.27 0.18(3)

8+ 1.64 0.54 1.02 (6)

9− 1.91 0.50 0.58 (7)

10+ 2.50 0.68 0.83 (12)

11− 2.79 0.68 0.73 (13)

12+ 3.26 0.81 0.86 (22)

13− 3.49 0.81 1.10 (30)

14+ 3.85 0.90 0.55 (17)

15− 4.05 0.94 1.15 (43)

Fig. 3. Experimental and calculated spectra of the
ground-state alternating-parity band of 144Ba. The experimen-
tal data are taken from [21].

The wave functions φI(x) of the negative-parity states are
concentrated farther from x = 0 than the wave functions
of the positive-parity states. The intrinsic quadrupole mo-
ment Q20(x) increases with increasing |x| since the clus-
ter configurations are more deformed than the mononu-
cleus. For this reason the E2 transition matrix elements
are larger for the negative-parity states in nuclei with per-
manent octupole deformation.

The effective charge for the E1 transition has been
taken to be equal to e(1 + χ) with the average state
independent value χ = −0.7. In the case of E2 tran-
sitions we did not renormalize the charge. For the oc-
tupole transitions our model includes only the octupole
mode responsible for the shape variation and deformation
of the nuclear surface. However, high-frequency isovector
as well as isoscalar octupole modes are not included in
the model Hamiltonian. Their combined effect leads to a
renormalization of the effective octupole charge δe

(pol)
3 =

(0.5 + 0.3τz)e [24], i.e. e
(eff)
3,proton = 1.2e for protons and

e
(eff)
3,neutron = 0.8e for neutrons.

The results of our calculations for 144Ba of the excita-
tion energies and the Qt(Eλ) are shown in tables 2–6 and
in figs. 3–5 in comparison to available experimental data.
The calculated ground-state wave function has its maxi-
mum in the vicinity of x = 0. The results obtained are
in good agreement with the existing experimental data.
Figure 4 and table 4 illustrate an angular-momentum de-
pendence of the intrinsic transition quadrupole moment.

In table 6 are presented the results of calculations of
the absolute values of B(E1; I → I−1) and of the branch-
ing ratios B(E1; I → I − 1)/B(E2; I → I − 2). They are
compared with the experimental data from [16]. The com-
parison shows that, taking the experimental error bars
into account, this is not a bad agreement, besides the 8+

and 14+ states.

In the framework of the cluster approach a larger value
of the E2 transitional moment for the negative-parity
states is explained by a higher weight of the alpha-cluster
component in the wave function of the odd-I states which
is zero at the barrier top because of its asymmetry with
respect to the x → −x reflection. The alpha-cluster con-
figuration has larger quadrupole and octupole deforma-
tions than the mononucleus one. This explanation has its
counterpart in the model with the quadrupole and oc-
tupole collective modes conserving axial symmetry. The
effect of an increase of B(E2; I + 2 → I) for the transi-
tions between the negative-parity states compared to the
positive-parity ones is explained in the following way [7]
for this model. The potential energy as a function of β20
and β30 has two minima located at β20 = (β20)min 6= 0 and
β30 = ±(β30)min 6= 0. Both minima are physically equiva-
lent. They are transformed one into another by a reflection
in a plane perpendicular to the axial symmetry axis. If the
barrier separating these minima is not high enough, the
system can be found with nonzero probability at the top of
the barrier. If the barrier is located at (β20)barrier which
is smaller than (β20)min ((β30)barrier = 0 by definition),
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Fig. 4. Angular-momentum dependence of the calculated
transitional electric dipole and quadrupole moments for 144Ba
(solid curve). The experimental data from this work are shown
as squares and the weighted averages from previous publica-
tions, listed in tables 3 and 4, as open circles.

then the states of the positive parity have a smaller ef-
fective quadrupole deformation than the negative-parity
states because the larger part of their wave functions is
located near the barrier top compared to the wave func-
tions of the negative-parity states. Being considered in
the time-dependent picture the system is moving along
the valley connecting a minimum with the barrier top (as
seen in fig. 5 of [7]). This demonstrates the formation of
the softer mode describing a motion in the β20β30-plane.

4 E2 transitions between negative-parity

states in octupole vibrational nuclei

The cluster picture used in the previous section is compat-
ible only with the situation when nuclei have octupole de-
formation or are near to be octupole deformed. In this case
E(1−) < E(3−). However, there are nuclei with low-lying
negative-parity collective states and a rotational sequence
of angular momenta of the excited states at higher I, i.e.

E(I−) < E((I+1)+) < E((I+2)−) . . . , in which E(1−) >
E(3−). In this case we have at low I anharmonic octupole

Fig. 5. Angular-momentum dependence of the calculated
transitional electric octupole moment for 144Ba (solid curve).

vibrations around β30 = 0 and the cluster degree of free-
dom η is insufficient to describe such collective motion. In
this case both quadrupole β20 and octupole β30 degrees of
freedom should be considered as independent ones.

To analyze the dependence on parity of the E2 transi-
tion probabilities B(E2; (I + 2)π → Iπ) in these octupole
vibrational nuclei let us consider a model which is a sim-
plified version of the quadrupole-octupole coupling model
formulated in [25,26].

We assume as in [25,26] that the quadrupole motion is
characterized by the presence of a static quadrupole defor-
mation which is large enough compared to the amplitude
of the zero-point oscillations around equilibrium deforma-
tion. These oscillations are neglected in the Hamiltonian
and the only degrees of freedom related to the quadrupole
motion which are considered are rotational angles describ-
ing a rotation of the deformed quadrupole field. Concern-
ing the octupole motion it is assumed that there are oc-
tupole vibrations around β3 = 0 and there is also the
quadrupole-octupole coupling term in the Hamiltonian.
The Hamiltonian takes the form

H = Hcore + ~ω3
∑

µ

f+3µf3µ

+κ
∑

µ

(−1)µQ(quad)
2µ Q

(oct)
2−µ , (9)

where κ is a parameter and Hcore is a function of the
angular momentum of the quadrupole mode Rµ,

Hcore = Hcore(R
2) . (10)

In the simplest case

Hcore =
~
2

2=R
2. (11)

The operator f+3µ(f3µ) is the octupole boson creation (an-

nihilation) operator. Since we neglect the quadrupole vi-

brations around equilibrium the operator Q
(quad)
2µ is taken
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to be equal to β2D
2
µ0(θ), and Q

(oct)
2µ is taken to be equal to

Q
(oct)
2µ =

∑

m,m′

C3m′

3m2µf
+
3m′f3m, (12)

where C3m′

3m2µ is the Clebsch-Gordan coefficient. The an-
gular momentum of the quadrupole mode R acts only on
the functions of the angle θ and commutes with f+3µ, f3µ.

The Hamiltonian (9) cannot be applied to description
of nuclei with the strong octupole correlations like 144Ba
because of the harmonic approximation for the octupole
motion expressed by the second term in (9). This Hamil-
tonian can be, in principle, diagonalized, however, it will
require an introduction of the additional parameters which
can vary significantly from one isotope to the other.

The octupole phonon operators commute with the
Wigner function D2

µ0(θ). Thus,

H = Hcore + ~ω3
∑

µ

f+3µf3µ

+κβ2
∑

µ

(−1)µD2
µ0(θ)

∑

m,m′

C3m′

3m2µf
+
3m′f3m . (13)

This Hamiltonian can be transformed into the intrinsic
frame by the substitution

f+3µ →
∑

K

D3
µK(θ)b+3K ,

Rµ → Iµ − j(oct)µ , (14)

where b+3K , b3K are intrinsic boson operators,

[b3K , b
+
3K′ ] = δKK′ , (15)

Iµ is the total angular momentum operator whose action
on the Wigner functions is determined by the standard
relations

[I±, D
I
MK ] =

√

(I ±K)(I ∓K + 1)DI
MK∓1 , (16)

[I0, D
I
MK ] = KDI

MK . (17)

The intrinsic angular-momentum operator of the octupole

mode j
(oct)
µ acts only on the octupole bosons b+3K , b3K

[j
(oct)
± , b+3K ] =

√

(3∓K)(3±K + 1)b+3K∓1 , (18)

[j
(oct)
0 , b+3K ] = Kb+3K . (19)

The commutator [Rµ, f
+
3ν ], which is equal to zero, is trans-

formed in the new variables to [Iµ − j
(oct)
± ,

∑

K D3
νKb

+
3K ]

and is equal to zero, as can be easily checked by straight-
forward calculations.

Thus, in the intrinsic frame the Hamiltonian (9) takes
the form

H = Hcore

(

(I − j(oct))2
)

+
∑

K

(

~ω3 + κβ2C
3K
3K20

)

b+3Kb3K . (20)

The eigenfunctions of this Hamiltonian for the lowest
family of the positive-parity states are

√

2I + 1

8π2
DI
M0|0〉 , (21)

where |0〉 is the vacuum state for intrinsic excitations. The
eigenfunctions of the one-phonon negative-parity states
are

√

2I + 1

8π2

∑

K

u
(I)
K DI

MKb
+
3K |0〉 , (22)

where the coefficients u
(I)
K are determined by diagonaliza-

tion of the Coriolis term in the Hamiltonian (20). We do
not need the concrete values of these coefficients for our
further consideration and therefore assume only that they
are smooth functions of I.

Let us calculate the reduced matrix elements of the
E2 transition operator which in this model is given by the
expression

Q2µ =

√

5

16π
Q20D

2
µ0 , (23)

where Q20 is the intrinsic quadrupole moment parame-
ter. In the following, let I be an even number. Using (21)
and (23) we obtain for transitions between positive-parity
states,

〈I ‖ Q2 ‖ I − 2〉 =
√

5

16π
Q20

√
2I − 3CI0

I−2020 . (24)

For the transitions between negative-parity states we ob-
tain, using (22) and (23),

〈I + 1 ‖ Q2 ‖ I − 1〉 =
√

5

16π
Q20

√
2I − 1

×
∑

K

u
(I+1)
K u

(I−1)
K CI+1K

I−1K20 . (25)

The last expression can be simplified using the following
approximation for CIK

I−2K20:

CIK
I−2K20 =

√

3[(I − 1)2 −K2][I2 −K2]

(2I − 3)(2I − 2)(2I − 1)I

≈
(

1− K2

(I − 1/2)2

)

CI0
I−2020 . (26)

Substituting (26) in (25) we obtain

〈I + 1 ‖ Q2 ‖ I − 1〉 =
√

5

16π
Q20

√
2I − 1CI+10

I−1020

×
(

1−
∑

K K2u
(I+1)
K u

(I−1)
K

(I + 1/2)2

)

. (27)

Assuming a smooth dependence of u
(I)
K on I, we can

write
∑

K K2u
(I+1)
K u

(I−1)
K ≈ ∑

K K2(u
(I)
K )2 ≡ 〈I|K2|I〉.
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Indeed, doing a Taylor expansion we obtain
∑

K

K2u
(I+1)
K u

(I−1)
K =

=
∑

K

K2

(

u
(I)
K +

d

dI
u
(I)
K +

1

2

d2

dI2
u
(I)
K + . . .

)

×
(

u
(I)
K − d

dI
u
(I)
K +

1

2

d2

dI2
u
(I)
K + . . .

)

≈
∑

K

K2

(

(u
(I)
K )2 + u

(I)
K

d2

dI2
u
(I)
K − d

dI
u
(I)
K · d

dI
u
(I)
K

)

=
∑

K

K2(u
(I)
K )2

(

1 +
d

dI

(

d
dI u

(I)
K

u
(I)
K

))

. (28)

The second term on the right-hand side of (28) con-
tains the second-order derivative and the square of the

first-order derivative of u
(I)
K over I. We neglect this term

following our assumption on a smooth dependence of u
(I)
K

on I.
Combining the results for E2 transitions between both

positive and negative states we get

〈I ‖ Q2 ‖ I − 2〉 =
√

5

16π
Q20

√
2I − 3CI0

I−2020

×
(

1− 1

2
(1− (−1)I) 〈I − 1|K2|I − 1〉

(I − 1/2)2

)

, (29)

where I can take both even and odd values. The last
relation demonstrates the effect of staggering in the
E2 reduced matrix elements and explains why in oc-
tupole vibrational nuclei like 148Nd E2 transitions be-
tween negative-parity states are weaker than between
positive-parity ones.

The values of
√

〈I|K2|I〉 which fit the experimental
data [27,28] on E2 transition matrix elements 〈I ‖ Q2 ‖
I−2〉 between the negative-parity states in 148Nd are given
in table 7. They are smaller than 3.0 in agreement with our
assumption that the intrinsic excitations are the octupole
vibrations. However, the value of

√

〈K2〉 needed to fit the
experimental data for the 3− → 1− transition is rather
large. The experimental value of the 〈11− ‖ Q2 ‖ 13−〉
is significantly reduced compared to the rest of the band.
This probably indicates a band crossing near Iπ = 13−.

Table 7. Values of
√

〈I|K2|I〉 extracted from the experimental
data on the E2 reduced transition matrix elements, connect-
ing negative-parity states in 148Nd, using formula (29). The
experimental data are taken from [28].

Iπi → Iπf

√

〈 1
2
(Ii + If)|K2| 1

2
(Ii + If)〉

1− → 3− 2.2± 0.1
3− → 5− 2.1± 0.1
5− → 7− 2.8± 0.3
7− → 9− 0.8+1.1

−0.8

9− → 11− 2.1+1.0
−2.1

5 Conclusion

The experimental data on the E2 transition probabilities
between the states of the ground-state alternating-parity
bands of 144Ba show a significantly larger value of the E2
transition probability between the negative-parity states
compared to the positive-parity ones. This effect can be
explained by a higher weight of the deformed component
in the wave functions of the odd-I states. In the framework
of the cluster approach it is explained by a higher weight of
the alpha-cluster configuration, which is more deformed,
in the wave function of the negative-parity states com-
pared to the positive-parity ones. In the framework of the
traditional collective model with the quadrupole and oc-
tupole degrees of freedom the effect of the increase of the
E2 transition probability for the transitions between the
negative-parity states is explained by a higher value of the
quadrupole deformation at the minima of the potential en-
ergy as a function of β20 and β30 compared to its value
at the top of the barrier separating two physically equiva-
lent minima, having opposite signs of the octupole defor-
mation. This picture is applied to nuclei which have per-
manent octupole deformation or are near to be octupole
deformed such as 144Ba.

The analysis of a dependence on parity of these E2
transition probabilities in the nuclei with the collective
potential energy having minimum at β30 = 0 has shown
that these nuclei are characterized by a nonzero average
value of the projection of the intrinsic angular momentum
of the octuple excitations on the intrinsic symmetry axis
K. This decreases the E2 transition probabilities between
the negative-parity states compared to the positive-parity
ones which have K = 0. An example for such a situation
is 148Nd.
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04-02-17376 and BMBF grant 06MT190. R.V.J. thanks the
Alexander von Humboldt Foundation for support.
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